Magnetic flux pinning properties of single-crystalline Li₂O doping FeSe_{0.5}Te_{0.5}

Jie Zhang¹, Y. Zhao^{2,3}

¹ College of Physics, Chengdu University of Technology, Chengdu, Sichuan, 610059, China. (Times New Roman 12 pt; italic)

² College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China

³ Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Normal University, Fuzhou 350117, China

The study investigated the chemical doping effect of Li₂O in the FeSe_{0.5}Te_{0.5} single- crystal. The addition of Li₂O led to a decrease in the superconducting phase, resulting in reduced superconductivity in the FeSe_{0.5}Te_{0.5} samples. X-ray diffraction (XRD), results indicated that the lattice constant of the *c*-axis initially decreased and then increased with increasing Li₂O content, suggesting that Li₂O may exist in FeSe_{0.5}Te_{0.5} single-crystal in the forms of intercalation and substitution. Notabley, an increase in the *c*-axis lattice constant was observed in the sample with 5wt% Li₂O doping. The relationship between pinning force density and magnetic field, the F_p/F_{pmax} - μ_0H curve revealed that only one peak of pinning force density was present in the sample, indicating that a single pinning mechanism dominated in the Li₂O doping FeSe_{0.5}Te_{0.5}.