The effect of Pb Substitution on the BiS₂-based superconductors La(O, F)BiS₂

Miku Sasaki, Yasushi Nakamura, Tetta Nakamura, Yoshiyuki Shibayama, Naoki Momono

Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

The BiS₂-based superconductors have layered structure consisting of block and conduction layers. The crystal structure is similar to those of high- T_c superconductors, such as iron-based superconductors. These superconductors show an anomalous isotope effect on T_c [1], suggesting that the mechanism of superconductivity in this system may be unconventional type. A key feature of BiS₂-based superconductors is that T_c increases by a factor of 2 to 5 when pressure or chemical pressure is applied [2, 3]. Recently, the substitution of Pb or Sn on Bi sites has been reported to show anomalous resistivity and increase in T_c that cannot be explained by chemical pressure effects [4, 5].

In this study, we synthesized single crystals of $LaO_{0.5}F_{0.5}Bi_{1-x}Pb_xS_2$ (*x*=0~0.2) and measured resistivity, thermal expansion, specific heat and Seebeck coefficient to understand the change of T_c and anomalous resistivity. Figure 1 shows the Pb concentration dependence of T_c and the characteristic temperature T*, at which anomalous transport properties are observed. T* appears at around *x*=0.08 and increases linearly with *x*. The large thermal expansion anomalies, specific heat anomalies, and the results of the crystal structure analysis indicate that a first-order structural phase transition from tetragonal (*P*4/*nmm*) to monoclinic (*P*2₁/*m*) occurs at T*. The resistivity anomalies are attributed to the structural phase transition to monoclinic structure. Furthermore, the Seebeck coefficient indicates that the anomalies at T* are associated not only to the lattice system but also to the electronic system. Superconductivity is not observed above 2 K at *x*=0.08, near the phase boundary where T* appears. At $x \ge 0.09$, the samples exhibit a sharper superconducting transition than those at x < 0.08. This result supports that the monoclinic structure has a positive effect on the superconductivity in the BiS₂ system.

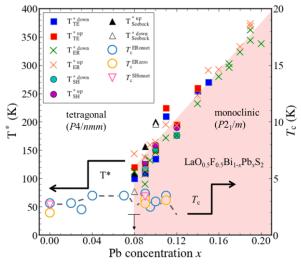


Figure 1. Pb concentration x dependence of T^* and T_c

References

- [2] T. Tomita et. al., J. Phys. Soc. Jpn. 83, 063704 (2014).
- [3] Y Mizuguchi et. al., Sci. Rep. 5, 14968 (2015).
- [4] S. Otsuki et. al., Solid State Commun. 270 (2018).
- [5] M. Sasaki et. al., J. Phys. Soc. Jpn. 93, 074707 (2024).

^[1] K. Hoshi et. al., Phys. Rev. B 97, 094509 (2018).