Serial new high-temperature superconductors [(C_nH_{2n+1})₄N]_xFeSe (n=2,3,5,6,7,8) synthesized by electrochemical intercalation

Jihu Lu^{1,2=}, Zouyouwei Lu^{1,2=}, Yuhang Zhang^{1,2}, Feng Wu^{1,3}, Jiali Liu^{1,2}, Yue Liu^{1,2}, Xiang Li³, Ziyi Liu¹, Hua Zhang^{1*}, Xiaoli Dong^{1,2,4*}, Zhongxian Zhao^{1,2,4}

¹ Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China

² School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

³ Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing 100081, China ⁴ Songshan Lake Materials Laboratory, Dongguan 523808, China

* Corresponding authors: zhanghua@iphy.ac.cn; dong@iphy.ac.cn.

⁼ These authors contributed equally.

Electrochemical intercalation allows quaternary ammonium cations (e.g. CTA+, TBA+ and TMA+) to be effectively inserted between FeSe layers, achieving a maximum $T_c \sim 50$ K and an interlayer distance of up to 15.5 Å [1~3]. Building on this approach, we explore a series of new FeSe-based high-temperature superconductors $[(C_nH_{2n+1})_4N]_x$ FeSe (n=2,3,5,6,7,8), enabling broad tunability of the spacing between adjacent FeSe layers beyond 10 Å and all exhibiting T_c above 40 K. Among them, (THA)_xFeSe, i.e. $[(C_6H_{13})_4N]_x$ FeSe shows a T_c of up to 45 K and a *c*-axis lattice parameter reaching 18.4 Å—the largest interlayer distance of FeSe-based superconductors with ~100% diamagnetic shielding so far. These materials offer promising platforms for studying the relationship between interlayer coupling, superconducting fluctuations and superconductivity.

References

^[1] M. Z. Shi et al., Phys. Rev. Mater. 2, 074801 (2018).

^[2] M. Z. Shi et al., New J. Phys. 20 123007 (2018).

^[3] B. Rendenbach et al., J. Am. Chem. Soc. 143, 3043-3048 (2021).