## Analyses of Upper Critical Fields of H-Substituted SmFeAsO Epitaxial Films Based on Single- and Multi-Band Models

Kota Hanzawa<sup>1</sup>, Masashi Miura<sup>2,3,4</sup>, Jumpei Matsumoto<sup>1</sup>, Hidenori Hiramatsu<sup>1,5</sup>, Hideo Hosono<sup>5,6</sup>

<sup>1</sup> Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan

<sup>2</sup> Graduate School of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan,

<sup>3</sup> Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA,

<sup>4</sup> JST-FOREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 Japan,

<sup>5</sup> MDX Research Center for Element Strategy, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan

<sup>6</sup> National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-004, Japan

SmFeAsO possesses the highest critical temperature among the iron-based superconductors via H/F substitution. Although fabrication of SmFeAsO<sub>1-x</sub>H<sub>x</sub> epitaxial films had been technologically difficult, we developed a H substitution process using topochemical reaction, and successfully obtained the films [1]. Then, high field measurements directly unveiled that the film exhibited the highest upper critical field ( $H_{c2}(0)$ ) among them at low temperature limit [2]. For practical superconductor applications, critical current density ( $J_c$ ) is another important property. Even though it is possible that the  $J_c$  is tuned and enhanced with pinning centers, the upper limit of  $J_c$  is restricted by depairing current ( $J_d$ ). Thus, to achieve maximally high  $J_c$ , it is essential to understand  $J_d$ . In Ginzburg-Landau theory, the  $J_d$  is inversely proportional to coherence length ( $\zeta$ ), which is generally calculated from orbital-limiting field at 0 K. Therefore, estimation of  $H_{c2}(0)$  is a key issue to investigating  $J_c$ . In this study, we analyzed  $H_{c2}$  of the SmFeAsO<sub>1-x</sub>H<sub>x</sub> epitaxial films based on single- and multi-band models.

For single-band fittings, we employed Werthamer-Helfand-Hohenberg (WHH) theoretical model [3]. Figure 1a summaries the fitting results for  $H_{c2}$  under external fields applied along the *ab* plane (||*ab*). By changing the dominant fitting parameter  $\alpha$  (Maki parameter), the  $H_{c2}(0)$  varies between ~120 ( $\alpha = 1.2$ ) and ~185 T ( $\alpha = 0$ ). In ||*c* case,  $H_{c2}$  was fitted by using the clean limit two-band model [4]. The fitting curve is displayed in Figure 1b, where the  $H_{c2}(0)$  was estimated to be 154 T. From the  $H_{c2}(0)$ ,  $\xi$  was calculated to be as short as 1.46 nm. This short  $\xi$  results in an extremely high  $J_d$  value of ~415 MA/cm<sup>2</sup>, which contributes to high  $J_c$  (~10 MA/cm<sup>2</sup>) of SmFeAsO<sub>1-x</sub>H<sub>x</sub> [5].



Figure 1: Fitting results for H<sub>c2</sub> of SmFeAsO<sub>1-x</sub>H<sub>x</sub> based on (s) single-band WHH and (b) two-band clean limit models.

**References** [1] J. Matsumoto, *et al. Phys. Rev. Mater.* 3, 103401 (2019). [2] K. Hanzawa, *et al. Phys. Rev. Mater.* 6, L111801 (2022). [3] E. Helfand, *et al. Phys. Rev.* 147, 288 (1966). [4] A. Gurevich, *Rep. Prog. Phys.* 74, 124501 (2011). [5] M. Miura, *et al. Nat. Mater.* 23, 1370–1378 (2024).